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ABSTRACT: We consider local models of magnetised D7 branes in IIB string compactifi-
cations, focussing on cases where an explicit metric can be written for the local 4-cycle.
The presence of an explicit metric allows analytic expressions for the gauge bundle and
for the chiral matter wavefunctions through solving the Dirac and Laplace equations. The
triple overlap of the normalised matter wavefunctions generates the physical Yukawa cou-
plings. Our main examples are the cases of D7 branes on P' x P! and P2. We consider
both supersymmetric and non-supersymmetric gauge backgrounds and both Abelian and
non-Abelian gauge bundles. We briefly outline potential phenomenological applications of
our results.
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1. Introduction

Understanding the structure of the Standard Model - the gauge groups, matter content
and Yukawa couplings - represents one of the principal problems of theoretical physics.
The Standard Model is not self-justifying and does not motivate a reason for its parameter
values. Any deeper explanation of the Standard Model will therefore likely involve new
physical ideas and concepts, possibly of a very different nature to those used in the Standard
Model itself. In this respect string theory stands out as an attractive and powerful complex
of ideas.

One attractive feature of string theory is that it naturally gives rise to chiral matter
and non-Abelian gauge groups, thereby reproducing the gross features of the Standard
Model. One of the main tasks of string phenomenology consists in finding vacuum con-
figurations resembling, as closely as possible, the gauge group and matter content of the
Standard Model. In the heterotic string this is achieved through appropriate gauge bundles
and Wilson lines, while for the type II theories this requires an appropriate model of inter-
secting D-branes. Such constructions should be regarded as proofs of principle: no current
construction reproduces all details of the Standard Model and, in any case, it is unclear
what the desired low-energy matter content actually is, as nothing precludes the existence
of extra massive vector-like matter. Recent reviews of string theoretic model building can
be found in []-[.

Such string constructions can be classified as either global or local. Global construc-
tions rely on the topological features of the totality of a compact space, with the classic
example being the weakly-coupled heterotic string where the spectrum and gauge group
are determined by a bundle over the entire Calabi-Yau. In this case the gauge coupling is
given by the volume of the entire Calabi-Yau. In local models, the principal avatar of which
is models of branes at singularities [ff], the gauge group and matter content depend only
on local physics and are independent of the details of the bulk geometry. The distinction
between global and local models is that in a global model the Standard Model gauge cou-
plings always vanish in the limit that the bulk volume is taken to infinity; in local models
such a limit leaves the gauge couplings finite. Recent years have seen a renewal of interest
in local models, and examples of work in this direction include [[j—[J].

This is one of the most attractive features of local models. It is well-known that for
global models the two control requirements of large volume and weak coupling can never
be parametrically satisfied: the known running of the Standard Model gauge couplings
implies that at the compactification scale

gy ~ 25 ~ = (1.1)

18gs°

6

~, making it difficult to control

A weak string coupling g; ~ 0.1 therefore implies V ~ 2I
the o/ expansion. However in local models eq. ([.]) no longer holds, allowing both large
volume and weak coupling to be simultaneously realised. In some cases the use of local
models can even be forced upon us by the moduli stabilisation procedure. An example

is the LARGE volume scenario of [If, [[7], where the volume is stabilised exponentially



large, thereby generating hierarchically small supersymmetry breaking. As mg,, ~ Mp /V,

a TeV gravitino mass requires a volume V ~ 10978

o, which implies that any realisation of

the Standard Model in this scenario is necessarily a local realisation.

A second attractive feature of local models is that they drastically simplify the ge-
ometric complexity of model building. The local geometry is non-compact and typically
involves far fewer moduli than the hundreds present in typical Calabi-Yaus. Local models
can also be constructed on very simple geometries such as C3/Z, singularities or their
resolutions. In some cases the local Calabi-Yau metric is known exactly, in contrast to the
cases of global compact Calabi-Yaus where no such explicit metrics are known. In the limit
that the bulk volume is very large - which is the case for the LARGE volume models - the
exact local metric is a parametrically good approximation to the true Calabi-Yau metric.

The knowledge of an explicit local metric has several consequences. The Laplace and
Dirac equations can be solved directly, allowing the exact normalised wavefunctions of the
chiral matter fields to be determined. Such wavefunctions give the extra-dimensional profile
of the fields. In local models of magnetised D7 branes, the Yukawa couplings schematically
descend from the triple overlap integral

EYUK = /d8x1/JPM[AM,¢] (1.2)

Using the form of the wavefunctions the triple overlap integrals of eq. ([.3) can be computed
and the physical Yukawa couplings, including the non-holomorphic parts, can be evaluated.
In contrast, algebro-geometric techniques, while very powerful in determining the holomor-
phic superpotential, are unable to determine the physical couplings which require knowl-
edge of non-holomorphic functions such as the Kahler metrics. Furthermore, the presence
of explicit metrics in principle also allows the spectrum and wavefunctions of Kaluza-Klein
modes to be computed. While these will not contribute to the renormalisable Lagrangian,
integrating out these modes will generate highly suppressed non-renormalisable operators.
Kaluza-Klein modes are generically gauge singlets and thus in the R-parity MSSM count
as right-handed neutrinos. Knowledge of the explicit form of such KK wavefunctions may
then have important consequences for string theory models of neutrino masses and mixing
matrices [I§].

The use of explicit metrics to study wavefunctions and Yukawa couplings through direct
dimensional reduction has been carried out in detail for toroidal models of magnetised D9
branes [[[J] (for a recent discussion for orbifolds of toroidal models see [R{]). The purpose
of this paper is to perform a similar analysis for models of magnetised D7 branes. We
shall study in detail local models of magnetised D7 branes wrapping curved spaces. We
aim to compute the chiral massless spectrum and wavefunctions, and use these to analyse
the structure of the resulting overlap integrals and Yukawa couplings. Our two principal
examples will be P! x P! and P?. The Dirac and Laplace equations on such geometries
have also been studied in [RI]-R5. The local Calabi-Yau geometries these correspond to
are Opiypi(—2,—2) and Op2(—3). While the former admits chiral supersymmetric D7
brane configurations in the geometric regime, the latter does not. The Op2(—3) geometry



is however of great interest as the resolution of the C3/Zs singularity, which has played a
central role in phenomenologically attractive models of branes at singularities [f.

This paper is organised as follows. In section [ we describe the dimensional reduction
of the D7 brane action, the classification of the four-dimensional fields that arise, the
structure of the Yukawa couplings and the equations that need to be solved to determine
the wavefunctions and Yukawa couplings. In section J we review the solutions of the Dirac
and Laplace equations on P!, while in sections A and f] we study the cases of P! x P! and
P2 respectively. In these sections we also discuss the twisting of the Dirac and Laplace
equations that is necessary to account for the curved nature of the D-brane embedding.

2. Dimensional reduction and the low energy action

In this section we aim to collect the equations of motion that are satisfied by the various
fields, and to describe how the solutions of these equations can be used to compute the
Yukawa couplings. We focus first on deriving the equations of motion that need to be
satisfied to obtain scalar, fermion and vector zero modes, and subsequently describe the
origin of the Yukawa couplings. The presence of a nontrivial brane embedding will cause
the equations determining the zero modes to be twisted.

We start with the ten-dimensional U(N) super-Yang Mills action, which will be di-
mensionally reduced to eight dimensions. The ten-dimensional action is

1 1 1-
S=— / d%( — —FynFMY 4 —MMDMq,z)), (2.1)
970 4 2

where 9 is a ten dimensional Weyl-Majorana spinor and Dytp = Vb — i[Ap,10]. On
reduction to eight dimensions the field content becomes one eight-dimensional gauge boson,
(Ap, M = 0...7), one complex scalar (¢, = ¢g + i¢g) and a single physical fermion .
The action is

1 1 1 < -
S=— / Bz < - ZTr{FMNFMN} — iﬂ{pw’“p%’“} +iTe{ Y™ Dy N} + %/\F’" (b7, A]).
g
(2.2)
Here we retain the indices M, N for the 8d quantities and use the index r for the 8 — 9
directions. There are also additional quartic scalar interactions in eq. (R.2) that we will
neglect as not relevant to our purposes. There is a U(1)gr symmetry transverse to the

brane, under which a field with R charge ¢ is multiplied by ¢4’ under rotation by an angle
6 in the 89 plane. The U(1)g charges of the fields are

QAM =0, Q)\j\ = i1/2, Q¢Sii¢>9 = +1.

where in writing U(1)r(A) = 1/2 we have treated A\ as a Weyl fermion of positive chirality.

We want to decompose the eight dimensional fields into four-dimensional ones. For
the bosonic degrees of freedom this is straightforward. The transverse scalar ¢, = ¢g + i¢g
becomes

. (z,y) = Z o' (2) oL (y),



where x refers to the 0,1, 2,3 directions and y to the 4,5,6,7 directions. The eight dimen-
sional vector decomposes into a 4 dimensional vector A, and 4 real scalars associated to
the internal vector degrees of freedom A,,, m =4,5,6,7.

Au(z,y) = ZAL(x)Ai(y% Ap(z,y) = Z O (2) Al (y).

To provide an explicit decomposition of the ten-dimensional Majorana-Weyl fermion, we
start by taking the ten dimensional gamma matrices to be in a product representation,

TH=RIRI Tm=+"04" 3l I"=+"237°7", (2.3)

where p=0...3,m=4...7,and r = 8,9. v* are the four dimensional Minkowski gamma

0 —I 0 o 0 o 0 o
0 _ 1_ T 2 _ Y 3 _ z 2.4

while 4™ are four dimensional Euclidean gamma matrices

0 —I 0 o 0 o 0 o
~1: ~2: ® ~3: z ~4: Y . 25
7 <i]1 o) 7 <020> 7 <axo) 7 <ayo> (2:5)

The 7% are Pauli matrices with 78 = ¢% and 7° = o¥. 4° and #4° denote the chirality

2 =)

The ten dimensional chirality matrix is I' = 7° ® 3° ® 0%, and a Weyl fermion X is defined

matrices

matrices

by A =T'A\. We can also define a Majorana matrix

porpirro— [ 0 o) g 7w O ) o (070 (2.7)
oy 0 0 —ioy 1 0

which satisfies BB* = [. The Majorana condition is A* = B\, and we will require that A
be both Majorana and Weyl.

In writing the spinor it will be convenient to use the following notation. Spinors can
be labelled by their chirality in each of the u, m and r directions. We will use superscript
to indicate positive chirality and subscript to indicate negative chirality, so the spinor A%
has positive chirality (a,b = 1,2,3,4;a = 1,2) in each of the u, m and r directions. The
Weyl condition restricts a general 10-dimensional spinor to

{)\17 )‘27 )‘37 )‘4} = {Aaba7 )‘abcw )‘abau aba}'

From the form of the Majorana matrix (R.7), we see that its action corresponds to a
chirality flip in both p and 89 directions. The Majorana condition A\* = B therefore
imposes relations between A1 and A4, and A2 and A3. A general Majorana-Weyl spinor can
be schematically written as

AMW = ()\1 + )\4) D ()\2 + )\3).



To be more explicit, we write the \; as

AP = €1 ()] ()67 (2),
2o be = &3 (@)Y2(y)02,0(2),
Asap = €3,a(2)¥36(9)05 (2),
Ma'e = Eaa(@)08(y)0aa(2). (2.8)
The Majorana condition B*A\* = X\ then imposes the constraints
& = —0y&T, g = —loy)y, 0, = —i67. (2.9)
§3 = —0yks, Y3 = —ioy s, 05 = i03.

From a four dimensional viewpoint there are two distinct types of left-handed spinors,
distinguished by their extra-dimensional chirality. These can be written as

<%>®<%>®<%>+<—£a>®<%?w>®<_%>,
<%>®<é>®<i>+<—£$>®<4i@>®<?>.(mm

In terms of representation content under the SU(2)z x SU(2)g ~ SO(3, 1) of 4D Minkowski
space, the SU(2)r x SU(2)g ~ SO(4) of the internal 4D space and the U(1)r we can write

A+ A\

A2 + A3

AL+ A= [(27 1) ® (27 1)]1/2 ©® [(17 2) ® (27 1)]—1/2
A2+ A3 =1[(2,1) ®(1,2)] 12 ® [(1,2) ® (1,2)]y 2. (2.11)

The subscript denotes the U(1)g charge. We will tend to use left-handed spinors in
Minkowski space and will treat A1 and Ao as the two independent dynamical degrees of
freedom, with A3 and A4 determined as above.

The geometric background we visualise is a stack of (P + @) D7 branes wrapped on a
4-cycle, with a magnetic flux background turned on P of the branes. The flux background
breaks the original U(P + @) gauge group. In the case that a U(1) bundle is turned on,
the low energy gauge group is U(P) x U(Q). All fields start off valued in Adj(P + Q), but
decompose and give bifundamentals under the flux background. An arbitrary field ® can

Y z (P,Q) (1,Adj(Q))
Chiral bifundamental matter arises from zero modes descending from either the X or Y

sectors. The X sector gives (P, Q) modes and the Y sector (P, Q) modes.
We suppose that M units of flux have been turned on in the W sector. When writing

be written as

the Dirac or Laplace equations for the X or Y, the covariant derivative term [A, ®] will
imply that modes in the X (V') sector are effectively charged under a U(1) field with M (-M)
units of flux. The number of fields in fundamental and anti-fundamental representations is
determined by the number of zero modes with M (-M) units of flux, and the net chirality
is given by Ny — N_p.



2.1 Equations of motion

In describing the equations of motion for the fields, we shall go into considerable detail for
the vector modes, and then be more concise in our description of the scalar and fermion
equations of motion.

An important general feature here is the fact that the brane is wrapping a cycle with a
nontrivial normal bundle. This implies that many of the equations of motion will need to be
twisted [Rf], reflecting the fact that the field is not scalar-valued but rather bundle-valued
over the cycle. This does not however hold for the internal degrees of freedom valued in
the tangent bundle, such as the (internal) vector modes. We first describe the equations
of motion for scalar fields that come from vector degrees of freedom in the internal space.

2.1.1 Vectors

The equations of motion for vectors start from the Yang-Mills action

1
Sym = / Lym = _F/ Tr [Fan FMY] (2.13)
MAxS 9~ JMixs

with
Fyn = VMAN — VNAM — Z[AM,AN]

Ay is valued in the adjoint representation of U(N) and the action is invariant under the
gauge transformation

Apnp — App+ 0 + [0, Anr).

On dimensional reduction, the vector degrees of freedom give rise to a 4-dimensional vector
(A,) and 4-dimensional scalars (A;) arising from vectors in the internal space. As the
vectors Ay are all valued in the tangent bundle, they are uncharged under the R-symmetry
transverse to the brane. Their equations of motion are therefore not subject to twisting
and can be found by a direct dimensional reduction of the action Lyy on the surface X in
the presence of a background magnetic field.

To establish notation and conventions, we start with the Lie algebra of U(/N). Our
discussion will follow that in the appendix of [I9]. The elements of the Lie algebra can be
taken to be!

(Ua)ij = 0aidaj, (€ab)ij = 0aidpj, (a #b).

The gauge field A is expanded as

Apn = By + Wiy = B4 Ua + Wkeys,. (2.14)

! Although strictly eqs is defined for a # b, for convenience of notation we will allow ourselves to write
eq» €ven when potentially a = b, an example being the last expression of eq. ()



Requiring that AJ]R/[ = Ay implies that B¢, is real and (W@)* = W]l\’;;. Let us state some

useful relations for the U, and ey:

(Ua)i(Up)jt: = dab(Ua) ik, [Ua, Uplit = (9ap) (Ua)ir — (Up)ir) = 0. (2.15)
(Ua)ij(eve) ik = Oab(ete)ik, (ebe)ij(Ua)jk = Ocalee)ik,
[Ua, €be] = (dab — dac) €pe-
(€abeed)ik = Obe(€ad)its [ab, €cd] = Ope(€ad) — Oad (€ch)-

Also, Tr(U,) = 1, Tr(epe) = Opes Tr(Ugepe) = Oape, where dgpe = 1 if and only if a, b and ¢
are all identical.
If we now write Ay = By + Wiy, we can expand

1
Lym = —@Tr (GMN + DMWY — DNWM — 4w ™M W) x
X (Gun + DyWn — DyWar — i[Why, WN])] (2.16)

Here Gyy = Vu By — VN By and DyWy = VW — i[Byr, Wy . Further expanding
we obtain

1
Lp = 2T [GrnGMY] (2.17)

1
—ETr [DMWNDMWN — Dy WyDNWM — z‘GMN[WM,WN]]

1 .

T W WA W) S (D = Dy .
g g

In backgrounds with Abelian magnetic flux, G sy has a non-zero vev but Wy, does not.?

The fluctuations of Wy will correspond to zero modes of the low energy theory. We

focus on the 2-point interactions, and neglect the 3- and 4-point interactions present in

equation (R.17). Expanding the terms of (R.17) we obtain

oy [GMN WM, WN]}

1

(G?MN _ G?\/IN) (WMabWNba _ WNabWMba) . (2.18)

2g2  4g2
We similarly obtain
Tr(Dy W DMWN) = (D W) (DM Naby, (2.19)
Tr(Dy W DNWM) = (DyWhe) (DN W Maby, (2.20)

where Dy W = VW —i(B§, — BY,)W. We write (B)3Y = BY, — BY,.
We now expand about the background fields, writing

Biy(y) = (B (y)) + 0By (y), (2.21)
Wit (y) = 0+ ®55(y). (2.22)

2For a careful study of vector modes in backgrounds with non-Abelian magnetic fluxes, such as used in
section (E)7 we would need to construct analogous equations in which (WgP) # 0.



Then
Tr [DMWNDM W — Dy Wy DYWM ] = D, ®"D"® " + D; " DI phab

DR DD — 2(D, B (DIWH)

The action becomes?®

7

B 1
= 17

2g2
+ (D@D eiby — 2(D;Whe) (D) — (D; @5 ) (DI )

Ly (Gg’j - Gi?j) (@i’“bqﬂ’ba - <1>j’“b<1>ivba) - [(DHQQ“D‘@ZV“I’) (2.23)

There are extra interactions not included in (R.23), for example 3- and 4-point interactions,
but these are less relevant for our purposes. Note that the covariant derivatives D’ reduce
to ordinary derivatives in the absence of flux, G?j = 0 - in this case the gauge connection
generates only 3-point (or higher) interactions.

We want to examine this action and work out the mass eigenstates. We will do this
term by term to work out the contributing parts.

e First,

7

a b i,ab F7,ba j,abFgi,ba ) __ i i,ba a b i,ab
P (Gij—Gij) (q> pibe _ piabgy >_2—92q>ﬂ (Gij—Gij)cp ,

where we have used Gi; = —Gj;. We denote G; — Gﬁ-’j by <G>?Jb. <G>?Jb represents the
flux difference seen by the a and b sectors. In this case we can then write
7
442

i

(Gla] _ GZ) (q)i,abq>j,ba _ q)j,abq>i7ba) _ 292

oIt (G) b phad, (2.24)
This generates a quadratic flux-dependent mass term.
e The next term we consider is the term
—2(D,,®%)(D'WHab),
On integration by parts, these will both give rise to terms of the form

(D'@y) (D WHe?).

As we will impose the gauge-fixing condition (Difbgb = 0), these will vanish and will
not generate mass terms.

e The next non-trivial term is

o (001) (67) =t (000°)
g

3This differs in the first term by a factor of —1/2 from the expression in (A.18) of @]



We have integrated by parts here. As we have gauge-fixed D;®"% = 0, we obtain

2_;2 (Diq)?a) <[)j(1)i,ab> _ _%@?@{Dijf)j]@i,ab

We need the action of [D;, D] on a vector field. Now,

[Di, Dj] = [Vi — i(B){*,V; — i(B)]"]

] i

= V93] = (VatB)y? - V(8

= [Vi, V] —i(G){). (2.25)
We therefore obtain
1 /. o 1 . P .
2_92 <Diq>?'a) (D](I)Z,ab> — _2_gzq>ga[vi’vj]q>l,ab + 2_;2¢y,ba<G>§szq>z,ab‘ (2.26)

Putting together the terms (R.24) and (R.26) considered so far, we have

é (G% _ ng) <(I>z'ab(1)jba _ @jab@z’ba> n 2_;2 (f?iCI)?“) <[)j(1)i,ab> (2.27)
= 22_;q>jvba<g>%bq>ivab — #@j,ba[vh VP,

These represent the ‘extra’ terms that contribute to the vector action in addition to the
naive D; D' term, which gives
1

- 2_2DZ¢?QD’L¢],GI) —
9

1 o
ﬁqﬁa (DZ-D’<I>3’“I’> (2.28)

We can finally combine equations (R.27) and (R.2§) to write down the equation of motion
satisfied by the vector modes,

N 7§ a . abyi za i a a
DiD*®%’ 4 2i(G)™ & — [V, V108" = —m? 5. (2.29)

Eigenmodes of the vector fields are obtained by finding solutions of eq. (2:29) for ®%. Zero

modes correspond to solutions with vanishing m?

. For intrinsically massive modes (such
as KK modes), we show in the appendix that the masses and profiles of vector modes can
be derived from those of the scalar modes.

We note that, regarded as a adjoint-valued vector in real coordinates, ®% must satisfy
(@2)* = &Y and so the he ab modes determine the ba modes. Working with complex
coordinates, we require (<I>%’)* = @%‘;. In this notation, @%’ zero modes correspond to

(P, Q) complex scalars and @%f = <I>£’7£f zero modes correspond to (P, Q) scalars.

2.1.2 Scalars

There are two degrees of freedom transforming as scalars in the extra dimensions. One
corresponds to the A, ® 1 mode that transforms as a vector in Minkowksi space, and
the other to the transverse scalar mode ¢j; that is valued in the normal bundle. As for
the vector, the scalar can be written as ¢®. In the presence of an Abelian magnetic

— 10 —



flux background, (P, Q) and (P, Q) representations come from ¢® modes with ab in the
upper-right or lower-left blocks.

On dimensional reduction the basic equation determinining 4-dimensional scalar modes
is the Laplace equation on the compact space,

—D; D¢ = m2¢®, (2.30)

where D; is the gauge-covariant derivative, D;¢p = V;¢ — i[A;, ¢]. For the A, x 1 mode,
eq. (R.3() is sufficient. This mode has all degrees of freedom in the tangent bundle of the
brane and so is untwisted. All eigenmodes can be found directly from solving (R.3(]).

In contrast, the transverse scalar mode is valued in the normal bundle and so must
satisfy a twisted version of the Laplace equation. As the normal bundle has non-trivial
curvature, the covariant derivatives must be modified to account for the curvature of the
bundle. This modification is equivalent to assuming the existence of an additional flux
background, proportional to the Kéahler form, in the equations of motion. For cases where
the cycle is rigid (i.e. the normal bundle has no holomorphic sections), in the absence of
flux there are no solutions to D;¢ = 0, and all eigenmodes are massive.

In this paper we shall never encounter cases where transverse scalars have zero modes in
a supersymmetric flux background (according to [[[J], this can never occur in the geometric
regime). For non-supersymmetric flux configurations, transverse scalars can have ‘zero
modes’, although due to lack of supersymmetry these modes are not massless. The form of
these ‘zero modes’ can be found by solving D;¢ = 0, where D; incorporates both the gauge
connection and that due to twisting, to obtain the holomorphic section of the bundle.

2.1.3 Fermions

For the fermionic degrees of freedom the basic equation of motion is the twisted Dirac
equation [26],
™M Dygp® = 0. (2.31)

Dy incorporates both the spin connection and the gauge connection due to the fluxes. We

[ ()
b = (O@)) . (2.32)

Here A\; and A are as in eq. (2.10). Both modes are left-handed in four dimensions but

can write the fermion field ¢ as

have opposite extra-dimensional chirality and opposite R-charges. The twisting consists
in a shift in the effective magnetic flux felt by the fermions: as A\ and Ao have different
R-charges the shift takes a different sign for the two modes.

The effect of the twisting is that the gauge connection is shifted by an amount equiv-
alent to the normal bundle, in such a way that for a pure stack of wrapped branes a single
constant zero mode exists in the absence of any magnetic flux. This zero mode, which
comes from the Ay sector, corresponds to the gaugino of 4d super Yang-Mills.

In supersymmetric configurations, the A\; modes are fermionic partners of the scalar
modes that come from internal Ap; vector degrees of freedom. The Ay modes are fermionic
partners of either the transverse scalars ¢; or the 4-dimensional vector bosons, A, x 1. The

— 11 —



equations of motion for the CPT partners Ay and A3 follow from those for A\; and Ao: the
zero modes of these are determined by the A1, Ay modes as in eq. (R.9).

2.2 Yukawa interactions

Four dimensional scalar fields can arise either from the ¢, or Ay; degrees of freedom, while
fermions arise from A either in the (A; + A1) or (A2 + A3) structure. Yukawa couplings will
combine two of the fermions with a scalar. From a higher dimensional perspective Yukawa
couplings originate from the ten-dimensional fermion kinetic term term

/ dzTr(A[™D,, \) — / dOzTr(AT™ A, A]).

To extract the gauge indices we write A = X‘}beab, Ay = Aﬁ j€cd, and X = /\}zgee f, Where
I,J, K are all species indices. Using Tr(egpecqeef) = 0qfOhcOde, We get

Te(ATM[ Ay, A]) = (X%bPMA?@,JX;? - Xﬂ;brMAﬁ;JAl;g) . (2.33)

Once the species I, J, K are specified, the Yukawa couplings can be directly evaluated. As
X = ATO, the basic integral is

/ L0y (A}“bPOPM Al xge — AbabropM 450 ﬂ%) . (2.34)
Here both A; and Ag are 10-dimensional Majorana-Weyl spinors and so will either be of
(A1 + A\g) or of (A2 + A3) type.

Neglecting the gauge indices in (2.34), we can now focus on the spinor structure. The
basic integral we need to evaluate is

/ 4\ (A}POPM A JAK) . (2.35)
This integral takes a different form depending on whether M = 4,5,6,7 or M = 8,9,

correspond to the 4-dimensional scalar arising either from a vector mode valued in the D7
tangent bundle or a scalar valued in the normal bundle.

Transverse scalars

We first consider M = 8,9, where the scalar mode corresponds to the transverse scalar. In

rorM — <§ g) ® <§ _OH> ® (1), (2.36)

which gives a chirality flip in both the 0,1,2,3 and 8,9 directions. To obtain a non-

this case

vanishing integral we therefore need A\; and Ax to be either both of the form (A; + A\4) or
both of the form (A2 + A3).
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We first assume the form A;, A\x = (A1 + A4), when the total Yukawa interaction is

Lyux = / @ (NPT Ay g+ AL TOTY Avg i) (2.37)

- J o (e () 040 () (%)«
+ (ei@er@) (vl weax®) (062) (Ta%) (940K>.

Using the relations (R.9), we can express everything in terms of \; alone, eliminating all
A4 dependence. We take (61(z) 0) = (1 0) as fields only have a trivial dependence on the
transverse coordinates. We obtain

Lyuk = /—d49€ (& (@)oyéik (@)ds(z)) /d4y (W11 (W)oyhik (y)) ¢2,.0(y)
+ [t (6 0ni@os@) [ aty (v woti) o0 239

Here ¢,z (y) = ¢s(y) + (—)igg(y). In four dimensional language these interactions cor-
respond to the Yukawa interactions ¢ ¢y + Yj¢5¢%, and the structure of this term
is A{A1¢;. In terms of chiral superfields this corresponds to the interaction between two
internal vector modes and one transverse scalar mode, consistent with the superpotential
W = hijkAiAj(I)k given in [@]

Therefore we will need to evaluate integrals of the form

/ dhy (T ()oy iz () 2.0(y) (2.39)

in order to determine the physical Yukawa couplings once the normalised wave functions
for fermions and scalars are known.

We can perform a similar computation for fermions of the form (A2 + A3). In this case
similar manipluations show that the “Yukawa interaction’ is

Lyvuk = /dwx ()\;IPOFMAMJ)\&K —l—)\;IFOPMAM,J)\ZK),
= /d45'3 (&3 (2)oyéor (z)ds(2)) /d4y (Va1 (W)oybak () ¢, (y)
+ [ dta (@& @oi) [ty (vl oic®) s (240)

However this case should not be interpreted as a Yukawa interaction. The structure of
this term is AgAo¢p. The o, giving a chirality flip in the extra dimensions implies that, in
the language of superfields, one of the Ay fermions is the fermionic part of a transverse
scalar ¢; superfield whereas the other is necessarily the fermionic partner of a gauge boson
vector superfield. This interaction is therefore a gauge interaction in 4-dimensions of the
schematic form ¢*AM<£, where the tildes denote fermions, and is the supersymmetrisation
of the ¢*A,0"¢ gauge interaction.
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Internal vector modes

We next consider M = 4,5,6,7, when the 4d scalar arises from an internal vector mode
valued in the D7 brane tangent bundle. In this case

FOFM:<(§§>®< Am )@H, (2.41)

which generates a chirality flip in both the 0,1,2,3 and 4, 5,6, 7 directions. In this case to
obtain a non-vanishing integral A\; and Ax must take different forms. We first consider the
case Ag = (A + \yg), and A\; = (A\y + A3). The total Yukawa interaction is

Lyuk = /leJE )\;IFOFMAMJ)\LK + A;7IFOFMAM’JA47K (2.42)

_ /dl% (e @e k@) ((0 ) ) (;YMAMJ) (wl,zg(y)» (61, 1011
+ <£$I(m)£471<(33)) < <0 Zbg,l(y)) <,~7MAMJ> (%,IS(Z/))) (911(73)92!() '

We again use the relations (R.9) to write everything in terms of A; and \a. We also use
(01(2) 0) = (1 0), as fields will be brane-valued and so will have trivial dependence on
the transverse coordinates. The Yukawa interactions then become

Lvox = = [ d's (@ofix@)os@) [ d (0 f0,) <ﬁMAWU> (ng@n>
o e somtonia) (o) () (5.

Here ¢(z) represents the 4-dimensional scalar field that is partnered to the vector fluctua-
tion Ap/(y) in the low energy theory.

We can perform a similar computation for the case that A\x = (A2 + A3) and \; =
A1 + A4, where we end up with

Lyuk = / A0z} TOTM Ay o i + AL TOTM Ay s i (2.43)

= /d4$ (S{I(az)ayggK(me(m)) /d4y (0 w{[o.y) (&MAMJ) <¢2,[5(y)>
- [ate (d@msn@onw) [t o%pﬁ<¢umﬁ<%@ﬁw>

In both cases the 4-dimensional interaction takes the form ¥;¢ ¢ s + Y75 ¢%, where the
scalar comes from an internal vector mode. These interactions take the form A1 A2A;.
In the language of chiral superfields, two of the fields (A\; and Ajs) come from internal-
vector superfields, whereas one (A2) comes from a transverse scalar superfield. The 4-
dimensional interaction comes from the same superpotential h;;; A;A; Py that generated
the interaction (R.3§).
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3. Compactification on P!

Having described the formalism we now want to apply it local models of wrapped D7
branes. However as a warm-up example we start by studying the spectrum of fermions,
scalars and vectors on P! with a non-trivial magnetic flux background. In sections [] and [
we move on to the more interesting cases of P! x P! and P2. We shall compare our results
for P! with those of 23, P4, BJ], by finding explicit solutions of the Dirac equation.

P! is the geometry of the Riemann sphere or the compactified complex plane. In com-
plex coordinates the canonical metric on P! is the Fubini-Study metric, which is equivalent
to the round sphere metric with radius R. The metric is given by

B 4R?dzdz

ds® = T (3.1)

3.1 Fermions on P!

To write the Dirac equation we need the spin connection. We choose an orthonormal set

of tangent vectors (e!,e?) for the zweibein, with

R R iR —iR
1 1 2 2
_ 1 - 2— " 3.2
T U+z22) FT Utz T (Ut T (U+22) (3:2)
Raising the indices, we obtain
L (1+22) 1= (1+22) 9,  —i(1+ 22) 95 (14 22)
‘ °R °oR = © oR  © °R (3:3)
The spin connection is given by
1 1 1
wzb = ie‘”’ (@Leg — 8,,62) — 561”’ (a“eg — 8#‘33) — §ewae°b (&pegc — &,ewc)ez, (3.4)
which evaluates to . .
12 1z 12 —iz
= L___ = 3.5
Wz (1+22) Wz (1+22) (3:5)

In two dimensions the flat space gamma matrices can be chosen to be

01 0 —1
1_ 2 _

10
For future reference, we note that %[’yl,’yz] =~12 =4 (0 _1) = i0®. The curved space

gamma matrices are

1 0 0 _ 1 (0(1+2%2)
Z: za o= — , Z: za o= = . 3-6
rme R((sz)o) = R(O 0 ) (3.6)

We also want to turn on constant magnetic flux on the two sphere. The gauge field and
field strength are
iMz —iMz —iM

oy A= Fe=ma o3 .
2(1+ zz)’ 2(1+ z2) (37)

A, = .
(1+z2)?
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with M integer. This field strength is quantised as |, g F'= —27rM. We can now write
down the Dirac equation
Y"Dptp = 0, (3.8)

where the covariant derivative Dy, is D,, = 9y, + iwmagyo‘ﬁ —iA,,, with v*8 = %[ya,yb].
Using the above results, the Dirac equation can be written as

1 0 (14 22)0; — = (ML) P _0
R\ (14 22)0, — 7 (FM+1) 0 Yy

The equations for different chiralities decouple and the general solutions for zero modes

v\ _ ([ FE0 ) )
<¢2) - ( (2)(1 + 22)(5 ))’ (3.9)

where f(Z) and g(z) are anti-holomorphic and holomorphic functions, constrained by nor-

and vy are

l\.’)+ M
‘:

malisability.

In order to obtain physically relevant solutions we must impose that solutions are
normalisable and well-defined. This first implies that only positive integral powers of z and
Z be present in f(Z) and g(z). We also demand that the solutions are square integrable,
namely that

/ d*z /gty is finite. (3.10)

In order to simplify our discussion we begin by focussing on '

2
/d2z\/’¢1T¢l = 2/d2 HT))(’MH) (3.11)

Let us now examine convergence properties at z — oco. For M < 0 there are no solutions
for which the integral is convergent. However for M > 0, the integral is convergent if
f(2) is taken to be a polynomial of degree M — 1, thus giving M linearly independent
solutions. For M < 0, similar arguments imply that 1, has normalisable solutions with
g(z) a polynomial of degree |M| — 1.

Let us summarise these results:

e For M > 0, there are normalisable solutions for ; only. These are given by

fiar-1(2)
=,

(1+22) ("2
where fyr—1(Z) is a polynomial of degree M — 1, giving |M| linearly independent

(3.12)

solutions.

e For M < 0, there are normalisable solutions for o only. These are given by
9\M|—1(Z)

(1+22) (%)

where g|7—1)(2) is a polynomial of degree |M| — 1, giving [M| linearly independent

Wy = (3.13)

solutions.

e For M = 0, there are no normalisable zero modes.
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Twisting

If the P! is embedded in a Calabi-Yau, the fermionic equations of motion will be twisted
to account for the nontrivial normal bundle. The twist must incorporate the effect of the
normal bundle and corresponds to a shift in the flux value M — M 4 1. A reason to see
why this must occur is because a unfluxed stack of D-branes wrapped on a P! embedded
in a Calabi-Yau is supersymmetric. The twisting is necessary to ensure that the constant
gaugino zero mode exists. After the twisting procedure, the fermionic solutions become

v\ _ [ fE0 )
<¢2) B ( (2)(1 + 22) 1+ ’))' (3.14)

The number of zero modes of the twisted Dirac equation is then |M — 1.

3.2 Scalars on P!

The scalar spectrum on P! is determined by solving
~9""DyDy¢ = —(9°°D:D: + ¢**D:D. )¢ = m*¢. (3.15)

Here D, and D;s are covariant derivatives, incorporating the gauge and geometric connec-
tions. Acting on a scalar they are given by

D6 = (0, — iAL)p — (az 4 %) s,

Dip= (9 — iAs)p = (ag - %) 6 (3.16)

W te that
e note tha v

[Dszf]qb = _ZF25¢ = _m

®. (3.17)
We can then write

_guuDuDu(b = _(QZZDZDZ + QZZDZDZ)(b
= _2922D2D2¢ - gZz [D27 D2]¢

5 M
= _2922D2D2¢ +

s (3.18)

The spectrum of —2¢** D5 D, is positive semi-definite, which follows from arguments similar
to those used to show the spectrum of the scalar Laplacian on a compact manifold is positive
semi-definite.

We can now analyse the spectrum. The simplest case is M = 0, for which the lowest
mode has eigenvalue zero and is constant over the two sphere. For M > 0. we know
from our analysis of the Dirac equation that D, has zero modes, and thus the lowest mass
modes can be obtained by choosing wavefunctions ¢, such that D,¢ = 0. These modes
have mass % and degeneracy |M| + 1. Note that D,¢ = 0 are the same equations solved
in the fermionic analysis, subject to a shift in the effective value of M. The shift is due to
the fact that fermions couple to the curvature of the sphere. As the field strength of the
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Dirac monopole is proportional to the Kéahler form, the effect of the curvature precisely
corresponds to a shift in the value of M.

An identical argument for M < 0 shows that the lowest modes have mass % in this
case, and are given by the solutions of Dz¢ = 0. The lowest modes are therefore always

massive for M # 0, with the forms of the solutions being

fu(2) m2 = M|
(1 + zz)MI2’ 2R2’
M=0: ¢(2%) =dy, m?>=0,

Ju(2) m2 — %
(1 + zz)MI2’ 2R2

M>0: ¢(z2z2) =

M<0: ¢(z,2) = (3.19)
where fjs is a holomorphic polynomial of degree M. The restriction to degree M is to
ensure that the wavefunctions are square integrable, namely that [ \/g¢*¢ is finite. The
fact that the polynomial is of degree M implies that the degeneracy of the zero mode
solutions is |M| + 1.

Twisting

As the normal bundle is nontrivial, scalars which correspond to transverse deformations
of branes wrapped on P! will be twisted. This follows from the fact that, embedded into
a Calabi-Yau, the normal bundle has no global sections due to the adjunction formula.
Transverse deformations of the brane are therefore automatically massive, and so in the
zero flux case no massless modes can exist. The twisting will correspond to a shift in the
flux, M — M + 1, such that in the absence of flux there are no massless scalar modes.*

3.3 Vectors on P!
We finally want to study vector zero modes on P! in the fluxed case. As derived in the
general case, we start with the equation

DiD'®; gy + 2i(G)™" i oy — [V', V]®; ap = =D g (3.20)

We will assume a > b for definiteness. The fluxes are

ap WM sap M
G*, =

T 2R2’ z 2R2 "

The gauge-fixing condition that we impose is
D;®"%® = ¢**(D,d%? + D,$P) = 0.

For zero-modes (or their equivalent) we expect to find the mode by solving first-order
equations. We will do this either through q)leb = 0 and D5<I>§b = 0, or with the opposite
z — z replacement. The non-zero elements of the mode in the (P, Q) representation will

4The fluxed case is always non-supersymmetric. While in the fluxed case ‘zero modes’ can exist, in the
sense that holomorphic sections of the bundle exist, the scalar ‘zero modes’ are not massless due to the lack
of supersymmetry.
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therefore be ®2° and ®% = (®%)*. The (P, Q) representation will correspond to ®%* and
(pc_ub — ((I)ba)*
z z *
Throughout this section we shall assume this ansatz for the vector modes, focussing
on the zero modes rather than on the massive KK states. Let us evaluate the effect of the
curvature term on such vector modes, first assuming ® # 0 and ®2° = 0. We can write

[V, V)08 = gi* [V, V|0 = ¢7[V5, V.|
= g% (—8:T%,) %

(1+ 22)? 2 ) Pab
R\t ) " B

We obtain a similar expression for ®2°. This allows us to write

. ab.z 1
2Z<G> b zab [V Vs ] z,ab = ﬁ(_M_ 1)<I>z,aba
. ab,z z 1
2i(G)™7 B, 4y — [VZ, V] Pz 0 = T2 (M = 1)z 0. (3.22)

We finally want to evaluate the Laplacian acting on ®2°, Di[)iCI)Zb. Expanding this out
and using D;®>% = 0, we obtain

DiD'o = |¢** (D:D; + DiD3) — g**0:T%, | @2 (3.23)

where D?® denotes the scalar covariant derivative, Df®% = (9; — i((4;)® — (A;)?)) ®®. We
can simplify (B-23) by commuting the covariant derivatives through, to obtain

o L M (I)ab
D;D'®%® = ¢**DS DS + (7 + 1> R—g. (3.24)

Combining all terms, we obtain

Sy MY Ppab
7 . ab,z z 2Z 198 THS z z
DiD'®, 4 + 21(G)** @y 0y — [V, V2P, p = < DiDs — —> 77 = —m? 7T (3.25)
Performing a similar calculation for @5 gives
. 7 ab,z z zz 578 M (I)ab 2 (I)%b
DiD'"® o, + 2i(G)*" Pz qp — [V, V3] P50 = DiD? 2T = g (3.26)

The lowest mass state is therefore tachyonic with a mass —|M|/2R?, and is obtained by
solving D:®% = 0 (for M < 0) or D:®% = 0 (for M > 0). Note that solving D:®% = 0
automatically ensures that D3®% = 0.

For the zero mode solution to exist, we require |M| > 2, with a zero mode degeneracy
of |[M| — 1. This is due to constraints on normalisability. The solution of the zero mode
equation with M < 0 units of flux gives

[M]

Di® =0 — &P = f(2)(1+22)" = .
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The normalisability condition is that

/\/agij (I)?b(I)?.a
be finite, which requires that g% <I>“b<I>b“ does not diverge as z — oo. As ¢** %,
this requires |M| > 2 for any zero mode solutions to exist. It also follows easily from this
condition that f has to be a polynomial of degree |M| — 2 and therefore the degeneracy
of zero modes is given by |M| — 1. All such zero modes are chiral, in the sense that they
correspond to | M| —1 complex scalar fields in the (P, Q) representation of the gauge group.

3.4 Normalisation and overlap integrals

The functional form of the lowest lying modes takes the same form independent of whether
the mode is scalar, vector or spinorial. Introducing a normalisation constant AI} , We can
write a generic zero mode wavefunction %, as (we take M > 0)

vl = e (327)
TN ) '
Then
512 9 d:ndy(zZ)K 9 drr?BK+1

Expressions for wavefunction overlaps will involve a similar integral, as any integral with
differing powers of z and z will automatically vanish when the angular integration is per-
formed. We therefore define the standard integral

/ dr r?E+1 K+ 1)I[(M—-K)
(14 r2)M+1 2T (M + 1)

where the evaluation can be performed using the substitution » = tan § and the relation

/2 - 2p—1 2¢—1 _ L'(p)(q)
/0 df sin“P~>(0) cos“™ 7 (0) = T ta) (3.30)

The normalisation constant A ﬁ is therefore given by

4TRT(K + 1)I'(M — K)
(M +1)

IVE]” = = 8TRAIS. (3.31)

The non-vanishing triple overlap integrals relevant for Yukawa couplings can also be
computed in terms of these closed form integrals and take the form:

1 dzz gZKZLZK+L
Yivp = K AL AfK+L P—1
NUNING (14223 (14222 (1+22) 2

8 R? IK—i—L

(3.32)
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The canonical P* metric has the SO(3) symmetry of the 2-sphere. This implies that
zero modes fall into SO(3) representations, both in degeneracy and in structure. The SO(3)
acts as a flavour symmetry, as it relates different zero modes with the same gauge charges.
The SO(3) flavour symmetry will govern the Yukawa couplings, which are determined by
the representation theory of SO(3). In the limit that the compact space really is compact,
the SO(3) isometry of P! will be broken, and the Yukawa couplings will be governed by an
approximate SO(3) symmetry.

4. Compactification on P! x P!

We now move onto models involving D7 branes, starting with P' x P! = F? as the simplest
appropriate geometry. Our interest is not in compactification on P! x P! per se , but rather
on P! x P! embedded in a Calabi-Yau. The tangent bundle of P! has c;(P') = 2.J, which
is Op1(2). From the adjunction formula and the triviality of the first Chern class for a
Calabi-Yau it therefore follows that the normal bundle to P! x P! is Op1 p1(—2, —2). The
fact that this is nontrivial indicates that the gauge theory will be twisted, and the fact that
the normal bundle has no global sections indicates that we can sensibly consider this as a
local model.

We will assume that the Calabi-Yau metric restricted to the minimal volume P! x P!

is canonical, ds%ﬂ = R%ds%ﬂ ® R%ds]%l. While we do not know of an analytic expression

1
for the full Calabix—]};(au case, we make this assumption on analogy with the P! case, where
the non-compact Eguchi-Hanson metric restricts to the canonical P! metric on the minimal
area P!, and the case of the resolution of C?/Z3, where the non-compact Calabi-Yau metric
restricts to the canonical Fubini-Study metric on the resolving P2.

We denote the coordinates on the two P's by z and w. The P! x P! metric is
B 4R%dzdz  AR2dwdw

ds" = (14 22)? * (14 ww)? 4.1)

and so
2R? 2R3 s (1+22)? wo (1 +ww)?

gzzz( gww_(l—kwu’))?’ g _TR%’ g = 2R§

14 22)%
4.1 Fermions on P! x P!

We want to study the massless fermion spectrum on P! x P1. We first construct and solve
the fluxed Dirac equation on P! x P!, and then describe how this is twisted to account for
the non-trivial normal bundle. Using the metric we construct a vielbein

el = %, el = %, el =0, el =0. (4.2)
e = 1Zf1zz’ e = %, e2 =0, e2 =0 (4.3)
3 =0, el =0, 3 = %, el = - ffuw. (4.4)
el =0, el =0, eh = T j—RinD’ er = 11“22@ (4.5)
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As the metric factorises, both the vielbein and the spin connection can be broken down
into separate parts. Using the results of section [ for P!, the spin connection is

W12 = 1z w12 —1z 34 1w u_ T
Y 14w

: T 0tz P T 14 Y T U tww)

The fact that the metric is a direct product implies there are no cross-terms such as 13 or
24.
The gamma matrices are defined in a coordinate basis through 3¢ = e®7;, giving

142z
2R,
142z

77 = "4 + ey = < (%1 — i72), (4.6)

|

(1 + i%2), (4.7)

N
Il

e + €72 = <

[N}
=
S~

- . . 1+w - -

FY =€+ ey = (3 — 94) (4.8)
2Ry

- o _— 14+ww) . o

AP = eP3q + ePFy = < Ry > (3 +i74) - (4.9)

Using these expressions and the form for the v matrices from eq. (@), we can compute
the spin connection terms appearing in the Dirac equation:

0 0 R R
Lomyoppza zo_ 1| 00—z 7
- == . . 4.10
2 12
w 12
“mwm V0
The kinetic term is 4™0,,, which evaluates to
0 0 0. SR
. 0 0 D Oy — i 05
Y 0m = | (425, (twn) T (4.11)
7 R. (92 Ra 8@ 0 0
ee) g, i520, 0 0

Prior to including any effects of magnetic flux, we have

- 1. .
V" Om + V"W 157 =

) 0 7 (—(1422)0. + %) 75 (1+ww)ds—%)
" 0 A (1 wm)d,—8) 7= (~(14+22)0:+3)
7 (1422)0:-5) 7 (I+wd)ds—5) 0 .
7 (I+ww)d,—%) 7 ((1+22)0.-3) 0 0

To obtain chiral fermions, we also require a gauge field background on P! x P'. We
place a Dirac monopole background on each P!, with M units of flux on the first P! and
N units of flux on the second P!. The resulting gauge field is

iMZz Mz tNw iNw
A= dz — dz dw — ———dw
211297 212" T it T 20 fu) "
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with - .
F=—"_d:nds— —

0727 Sdw A dw, (4.12)

(14 ww)
and
/ F=-27M, F =—-27N.
P (2) Pt (w)

We can then evaluate

iMZ N

I

N 1| o o Moo i
—iF" A = 5 —iMe L A E (4.13)

ooz 00

We can now write down the Dirac operator on P' x P!. This is

~m ~m 1 afiza z : 0D
" Do = 5" (Om + g7 ,75]—114#):( +),

D_ 0
where
b, [ (02200 0582) 5 (0 w0 — S5
7 (U w)d, + B510) g (—(14 22)0; + B2
D — : ((1 +22)0; — (M2+1)Z> o <(1 +win)dp — T w (4.14)

Rijl<(1 + win)dy + (N;”w) = <(1 +22)8, + (Mz_l)z)

T
We write the fermions as a column vector, ¥ = (1/11 o Y3 1/14) and look for zero modes
of the Dirac equation. It is easy to verify that, prior to imposing normalisability, zero mode
solutions of the Dirac equation take the following form:

(L+wm) = (1+22) % f(d,2)

. (1+w?)j(1+zz)§f@f&%) , (4.15)
(1+ww) 2 (1+22) 2 f(w,2)
(1+ww)#(1+zz)l+7f(waz)

where f are holomorphic polynomials.

4.1.1 Twisting of fermionic modes

To compute the wavefunctions for fermions living on D-brane worldvolumes, it is necessary
to twist the Dirac equation to account for the fact that the cycle lives in a curved space
and has a nontrivial normal bundle , ] As a Kéhler manifold, the holonomy group of
the surface is U(2), broken to U(1) x U(1) by the direct product metric of P* x P!. This
U(2) can be written as SU(2) x U(1)s, where the U(1); corresponds to the central U(1)
of the tangent bundle. In preparation for the description of the twisting procedure, it is
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helpful to see how the central U(1) acts on the four spinor modes v;. The action of U(1)

z ew z
O e

The action on spinors is given by A = %Aag [v*, 7). Here A%, = i6, A¥,, = i for infinites-

on tangent vectors is

imal transformations. Using the expressions ([.9) for 7%, 7%, we obtain

~ 0
A= 1 ([yv2, 1] + [v4,73)) (4.17)
000 O
000 O
= 4.1
0040 O ( 8)
000 —z0

From (f.1§) it is clear that under U(1); ;1 and 1 have charge 0, while 3 and 14 have
charges +1 respectively. Identifying SU(2);, with the SU(2) of the U(2) holonomy group,
we can then regard (¢1,12) and (3,14) as being in the (2,1) and (1,2) representations
of SO(4) = SU(2)1, x SU(2)g. As discussed in section [, on dimensional reduction all the
spinor modes correspond to left-handed spinors in 4-dimensions. The fact that we start
with a positive chirality spinor in ten dimensions implies that the representation content is

[(27 1) ® (2’ 1)]+1/2 @ [(2’ 1) ® (17 2)]_1/27

where the last number designates the R-charge of the mode under the U(1) transverse to the
brane world volume. (¢1,2) and (¢3,14) therefore have R-charges of £1/2 respectively.

The twisting corresponds to a replacement of the central U(1) generator J by J £
2R, where the choice of the sign is arbitrary. As the magnetic flux corresponds to a
Dirac monopole and has the same structure as the Kahler form, this twist corresponds to
(M,N) — (M,N)=£(1,1) in the Dirac equation. The choice of the sign is arbitrary and for
convenience we will take (M, N) — (M,N) + (1,1) for (¢1,12) and (M,N) — (M,N) —
(1,1) for (13,14). The different signs for (1, 12) and ()3, 14) correspond to the different R-
charges of these fields. After this twisting, the fermionic zero-mode wavefunctions of ({.17)
become, prior to imposing normalisability,

U1 1+ wd) 7 (14 22)"" 5 f(@, 2)
N (1+ww)1+%(1+25)#f(w72)
. vs || 1+ wm)l—%(l + zZ)l‘%f(m, o (4.19)
(I (1 + wlﬁ)%(l + ZZ)%f(w, Z)

Requiring the wavefunctions to be well-defined at the origin implies that f can only contain
positive powers of z and w. As for the P! case of section ], the allowed degree of the
polynomial is determined by the flux integers M and N and the requirement that the
wavefunction be square integrable.
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The counting of normalisable modes of the Dirac equation follows straightforwardly.
The number of zero modes of each type are

Field Number of zero modes Conditions on M and N

Py (IM|—1D)(|N|+ 1), M< -2 N>0.

Y2 (IM|+1)(IN| = 1), M >0,N < -2.

V3 : (IM|—1D)(|N|—1), M>2,N >2.

Y (IM]+1)|N|+1), M <0,N <0. (4.20)

We note that when M = N = 0, eq. () gives one constant zero mode, which represents
the gaugino of dimensionally reduced super Yang-Mills.

4.1.2 Counting zero modes

The number and form of the zero modes on dimensional reduction is in principle contained
in eq. ({.19). However we need to recall that when we reduce fluxed super U(P + Q)
Yang-Mills, 4-dimensional fermions start off valued in the adjoint,

_ (WX _(Ad®).,1) (®P.Q)
i = (Y Z) - ( (P.Q) <1,Adj<Q>>>’ 2y

where we have written the representations of the various modes. When we turn on magnetic
flux along the diagonal U(1) in the W sector and break the gauge group from U(P + Q) to
U(P) x U(Q), chiral bifundamental fermions can appear in the X and Y sectors. Fermions
in the X and Y sectors are sensitive to the difference in magnetic flux between the W and
Z sectors. Fermions in the W and Z sectors do not feel any net magnetic flux and only
generate the adjoint zero mode that is the SYM gaugino.

We suppose that the net amount of magnetic flux in the W sector is (M, N). From
section B, the charge felt by the bifundamental fermions comes from the [A, ] term and
therefore is (+M,+N) for the X modes and (—M,—N) for the Y modes. The chiral
spectrum consists of N( M,N) modes in the (P, Q) representation from the X sector, and
N, (—M,—nN) modes in the (P, Q) representation from the Y sector. The net number of chiral
zero modes is the difference Ny vy — M- w)-

A case of particular interest is when M and N have opposite signs, as we shall see
below that this is the case corresponding to supersymmetric brane configurations. For
definiteness we take M > 0, N < 0. From equation (f.19), we see that for this case 13 and
14 can never have zero modes, whereas ¥, and o can have zero modes. We can also see
that

Nouwy = (IM|+1)(IN[ = 1), Nca-n) = (M| = 1IN +1). (4.22)

and so
Nouny = Near—ny = 2(IN] — [ M]). (4.23)
For the particular case that M = — N, there are no net chiral zero modes, although vector-

like pairs do exist.

— 925 —



When M and N have opposite signs we see that all zero modes are either ¥, or s
in form. As chiral superfields, this means they are members of multiplets descending from
Ay and there are no fields that descend from the transverse scalar multiplets. As discussed
in section [, this means that all Yukawa couplings will vanish due to the gamma-matrix
structure of ¢fyMa.

When M and N have the same sign it becomes possible to find zero modes from both
the (11, 1)9) sector and the (13, 1)4) sector. In this case 1)1y does not necessarily vanish
and the trilinear Yukawa coupling can be non-zero. However in this case the D-terms are
non-vanishing and the brane configuration is not supersymmetric.

4.2 Scalars on P! x P!

The scalar modes on P! x P! are determined by the eigenmodes of
_gmanDn¢ = |: - (QZEDZDE + gzzDiDz) - (gmewDi) + gmelDDw) ](JS (424)

The product nature of the geometry implies that scalar wavefunctions on P! x P! factorise
as the product of two scalar wavefunctions on the individual P's,

O(z,Z2,w,0) = Ppr(z, 2)on (w, ). (4.25)
As for the P! case we can write
_ _ - M
—(97D=Dz + g7 DzD:)én = 29" DzDz6u + 5y 6,
1

~ _ - N
— (9" DywDg + 9" D Dy)dn = —2¢"" Dy Dwon + 2—R2¢N- (4.26)
2

The spectrum is a direct product of that for P': the lowest lying modes have mass

M N
oM IN]

and have degeneracy (|M|+ 1)(|N|+1).
As for the P! case the form of the solutions are
. o fu(z)
M>0 (bM(Z,Z)—W,
M=0: o¢u(2Z2) = ¢o,
, o fu(2)

where fj; is a holomorphic polynomial of degree M. The functions ¢y (w,w) have an
identical behaviour depending on the values of V.

Twisting of scalars

The fact that the brane is embedded in a nontrivial background also implies that the scalar
equation of motion should be twisted. From the extra dimensional point of view there are
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two scalar degrees of freedom. One of these corresponds to A, ® 1, which is a vectorlike
degree of freedom in 4 dimensions. The other corresponds to the transverse scalar ¢ that
parametrises normal motion of the brane. In the former case, the degree of freedom is
internal (as with A7) and so the equation of motion is not twisted. In the compact space
this degree of freedom therefore satisfies the scalar equation ([L.24), with M and N directly
given by the flux quantum numbers. This degree of freedom partners the 14 fermionic
degree of freedom.

This does not hold for the transverse scalar. This is valued in the normal bundle,
which for P! x P! is Op1yp1(—2,—2). The effective values of M and N for the transverse
scalar equation are twisted by two units of flux. The sign of the twist is determined
by our knowledge that there are no holomorphic sections of the normal bundle. Denoting
® = ¢g +igg, this implies that in the absence of flux there can be no normalisable solutions
of D;® = Dg® = 0, and consequently there are no massless scalars in the absence of flux.

The covariant derivatives are

Do = <8w + %) o, Dgo = <8@ — %) o. (4.29)

When M, N > 2 holomorphic sections of the bundle exist and ‘zero modes’ occur. However,
as for M, N > 2 the spectrum is non-supersymmetric these modes will not be massless but
will generically be tachyonic. To compute the masses of these twisted scalars will involve
the addition of a curvature contribution to the naive mass eigenvalue, due to the fact that
these scalar are valued in a nontrivial bundle over P! x P'. These modes partner the 3
fermionic mode, for which zero modes exist only when M and N have the same sign.

4.3 Vectors on P! x P!

The study of vectors on P! x P! clearly parallels that on P!, but there are some subtle
issues that arise. The vector equation follows from the general analysis,

DiD'®; gy + 2i(G)™" i 0y — [V', V] 0y = =D g (4.30)

We will assume a > b for definiteness. The fluxes are

M
Gz ab _ Gz ab __ e
2RY’
_ N
Guoab— _qo ab — 2 (4.31)
2R3

The gauge-fixing condition that we impose is
D@ = g**(D, % + D;0%) 4 g (Dy® + Dy ®y)) = 0.

As for the P! case, we will seek solutions for which D;(I)gb = 0, with ®2 = 0. Separate
solutions will occur for @?b oriented along the z or w directions. As for the P! case, the
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latter terms of equation ([£.30]) can be simplified to give

¢Z a
2i(G) " B, 4y — [VZ, Vel ®ogp = (—M — 1)—22

2i(G)"7 B oy — [VZ, Vi) Bsgp = (M — 1)—2

2(G)™" By ap — [V, Vi Pyt = (—N — 1)

2i(G)™" By ap — [V, Vi Pipap = (N — 1)

)

(4.32)

The Laplacian operator can also be simplified in analogy with equation (B.29), to give

. e s M+2 N
DiD'o = (g°D:D; + g“"D;, Dy, ) 02 — ) .
z g z z+g ww z + 2R% +2R% ,ab

. —M +2 N
D‘qu)qb — < zzDst wst Ds ) <I>ab B
i 9 Rz amz) A
L M N+2
b ab
DiD'@s = (g% DiD5 + gDy, D ) o4 + <ﬂ T > Doy -
Sy s~ M N+2
DiDZ(I)%b _ <gzzD§Ds + gwst Ds) (I)ab + <W _ 2—;_2> (I)w,ab' (433)
1 2

The mass equations can then be written as, in analogue with equations (B.25) and (B.26),
5 e D M N
m*0® = (¢DiD + g D;, Dy, ) @2 + <2R2 - 2R2> P ab-

L L M N
w2 = (7DEDE+ 9" D D3) 82 + (5 + 7 ) B

P e = M —N
m2e = (gZZDjpg + gw“’vaDfD> L 4 <—2R% + —2R5> Doy ab-
s e - M N
m2e® — (QZZDgpg + gwwaDDfU> L 4 (=5 + =5 | Pas.ap. (4.34)
2R? ' 2R3

An excitation ®2° is the product of a vector excitation in the z plane and a scalar excitation
in the w plane. For a ®, excitation, the D3 and D2 terms can be exchanged with an
N — — N shift in the above equations.

For M, N > 0, the lowest lying modes are obtained by solving D:®% = D3 &2 = 0,
and likewise D:®% = D2 ®% = (0. The resulting modes can be written as

ab _ M|/2 _\=INJ/2 - , o _ (IN] _[M]
DY = (1 + 22)"™MI2(1 4 ww) N2 A4, ) (2)pn(w),  with mass m? = <m_ﬂ ,

B = (14 22) 201 4+ w) V260 (2) Ayww), with mass m? = (2] N,
’ SR 2R

Here both Aj; and ¢x are (anti)holomorphic functions of the appropriate variables.
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For M > 0, N < 0, the zero modes are obtained by solving D ®% = D302 = 0, and
likewise D3®% = D2 ®% = (. The resulting modes can be written as

N M
D = (14 22) MI2(1 4 ww) NV2A, ()b (w),  with mass m? = |_L _ % 7
’ 2R2  2R?

M N
Y% = (1 + 22)"MI2(1 4 ww) N 2¢y(2)Ap n(w),  with mass m? = % - ’—L )
’ 2Ry 2Rj
where A and ¢ are (anti)holomorphic functions. Similar expressions are obtained for the
M < 0,N >0and M,N <0 cases.
The normalisation condition is that

/ \/agijq)?b(p?a

is finite. In a mode such as ®% = A /(2)én(w)(M, N > 0), this implies that Az (%)
satisfies vector normalisability on the first P!, whereas ¢y (w) only need satisfy scalar
normalisability. The degeneracy is then given by (|M| — 1)(|N|+ 1), with a requirement
that M > 2 for any normalisable zero modes to exist at all.

In general, the degeneracy of the ®2° (or ®2°) modes are given by (|M| — 1)(|N| + 1),
with a requirement of |M| > 2 for any normalisable modes to exist, while the degeneracy
of ®2 (or ®%) modes is given by (|M| + 1)(|N| — 1), with a requirement of |[N| > 2 for
any normalisable modes to exist.

The most interesting case for our purposes is the case M > 0, N < 0 as this corresponds
to a case where a supersymmetric spectrum can be realised. The relative sizes of the two
P's will adjust to eliminate tachyons® from the spectrum, generating genuinely massless
modes in the spectrum. The relative sizes will be such that R3/R? = |N/M]|.

In this case there are (|M| + 1)(|N| — 1) modes in the (P,Q) representation and
(|]M| —1)(|N| + 1) in the (P, Q) representation. The net number of chiral modes is

Ne.q —Ne.qg = (IM[+D(IN]=1) = (M| = D)(IN|+1) = 2(IN| = |M]).

This coincides precisely with equation ([£.23) and the topological index (see eq (3.51) of [[L])

I:/SCl(F)Cl(S). (435)

Defining e; by [p1e; = 1, we have ¢1(S) = 2(e1 + e2) (recall ¢1(P") = (n+ 1)e;) and
c(F)=|Mle; — \W\eg, which gives

I =2(M| - |N)). (4.36)

Note that it is only when M N < 0 that we can perform a direct comparison of the
topological index with the counting of zero modes from Aj,; alone - when MN > 0 we
should include the scalar and A, sector as well in order to compare with the index. However
MN < 0 is the only case that is relevant for supersymmetry.

SWhen present, the tachyons correspond to a Nielsen and Olesen instability [@] of the flux.
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We note that the structure of the vector zero mode wavefunctions is the same as
that for the fermion zero mode wavefunctions. The apparent difference - single powers of
(1+ 22) or (1 + ww) - goes away once one includes the g* necessary to compare g**®,®
and 91, The fact that the wavefunctions take the same form is of course necessary for
supersymietry.

4.4 Supersymmetry

For the brane embedding to be supersymmetric requires both F- and D-terms to vanish.
The F-term conditions are associated to holomorphy, and require that the brane wrap a
complex cycle with a holomorphic vector bundle. The D-terms involve non-holomorphic
conditions and depend on the locus in moduli space, thereby imposing constraints on the
Kahler moduli. As the D-term conditions are not holomorphic in nature, they receive
quantum corrections that will also become important at small values of the moduli.

In the geometric regime (all cycle sizes much larger than the string scale), the D-term
condition is that F' A J = 0, where F' is the relative flux between the two wrapped branes.
For the P! x P! case, we write F = Me; + Nep and J = R%el + R%eg. In this case the
D-term condition gives

M R?

— =——. 4.37

N R (437
Eq. (£:37) can only be satisfied if M and N have opposite signs, and in this case the ratio

g‘“—; is also fixed. This case is the one that we have considered in most detail above, where

we saw that in the supersymmetric limit the vector and fermionic wavefunctions match
precisely in terms of both number and representation.

However we also considered above cases where M and N have the same sign. This
was motivated by the need to obtain non-vanishing Yukawas, but a second reason for this
is our knowledge that the D-term equation will get quantum corrections, particularly at
small volumes. The supersymmetry requirement sign(M) = —sign(/N) that held deep in
the geometric regime may no longer hold in the small volume regime, and it may be possible
for the case sign(M) = sign(N) to be compatible with supersymmetry, particularly if we
also allow for the possibility that the D-term is cancelled by a matter field vev rather than
a vanishing Fayet-Iliopoulos term.

4.5 Normalisation and overlap integrals

The normalisation conditions for zero modes wavefunctions on P! x P! follow straightfor-
wardly from those on P'. The generic wavefunction takes the form
Kl KZ
Ki,K 1 z w
’l,Z) 1 2

My, M: (2,w) = K1,K M My—1° (4.38)
e Ny (L4 25 (1 + wa) 5

From the requirement that f \/@Wp =1 it follows straightforwardly that

‘ Wm RJMHM(M—KWMﬁMN%—m)
M:

(M, + )I(My + 1)
= 64m°RIR3 I3y Iy . (4.39)

= 167%R?

Kl,KQ
M17M2
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where [ J\Ifj was defined in eq. (B.29).

Similar to P!, the triple overlap integrals take the form:

2 P2 P2
YK1L1,K2L2 o 647 R1R2 IK1+L1 IK2+L2 (4 40)
MiN1 Py ,MaNoPo — NKl,Kz NLl,LQ NK1+L1,K2+L2 Mi+Ni+P —1 & Mg+No+Pp—1- :
Mi,M2* " N1,N2* " P1,Ps 2 2

As for SO(3) in the P! case, in the P! x P! case the zero modes fall into representations
of SO(3) x SO(3). The degeneracies of the zero modes and the structure of the Yukawa
couplings are determined by this global flavour symmetry. Once the P! x P! is embedded
in a compact Calabi-Yau, the local isometries will be lifted and the flavour symmetry will
become approximate, as discussed at greater detail in [P§].

5. Compactification on P2

We finally consider branes wrapped on P? = dP". As c(P?) = (1 + €)3, where ¢ is the
fundamental class, c;(P?) = 3e and from the adjunction formula it follows that for P2
embedded in a Calabi-Yau the normal bundle is Op2(—3). This geometry is interesting as
the local geometry of the resolved C3/Z3 orbifold, which is the basis of some of the most
attractive local realisations of the Standard Model [f]. The resolving 4-cycle is a P? and
the metric on the resolution has been computed in [29, BJ]. The non-compact metric can
be written as

(R6 +)\6)1/3 )6
G = R2 T RI(RG 1 A6y2/3 R (5.1)

where R? = Z?:l w;w; and A is a scale parameter. As R — 0 the metric has a coordinate
singularity. Through a change of coordinates it can be seen that the space is however
regular at R = 0, at which point there exists a minimal area P? with the canonical Fubini-
Study metric. The size of the P? is set by the parameter A, and our interest is in branes
wrapped on this P2.

In the non-compact limit the resolving P? has the canonical Fubini-Study metric.
Denoting coordinates by z1,z2, Z1, Z2, the Fubini-Study metric for P" comes from the
Kahler potential

i ~ i
K = §log (1 + Z«%‘%‘) = §ln (1 +p?), (5.2)

1=1

where p? = >, #iZi. The metric is given by

1 ;5 252
oo __G , 5.3
i 2<<1+p2> <1+p2>2> (53)
g7 =21+ p?) (5@'5 +215). (5.4)
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We can write these out explicitly as

i 0 0 1+ 2020 —Z129 ]
_ 1 0 0 —2129 14+ 2171
§= 21+ 2121 + 2222)2 14 2020 —2129 0 0 ’
| 2122 14+ 2121 0 0 i
i 0 0 1+z1z1 2129 i
_ 0 0 212 14 292
1 _ _ 122 222
=2(1 4+ 2121 + 22% 5.9
g ( 1= 2 2) 14+ 2121 Z129 0 0 ( )
2129 1+ 2929 0 0 i

The Kahler form is given by

s ddAdE FdR N ZdE
=14g.:dz" NdZ' =1 —1 . .
J =ig;dz" N dz 22(1+p2) i I (5.6)

We note that we can write

7
J = 72(1 n p2)2 [(1—1—73222)(17:1 ANdZ1—z9Z21dz1 N\ dZo—2z129d29 N\ dZ1 + (1+2151)dZ2 A dZo
1 = = = = pe2
=d <m [(Zlel + ZQdZQ) — (Zlel + ZQdZQ)}) =d <7> s (57)

where the one-form ey will be subsequently used in eq. (p.1§). This last equality is only
valid away from the origin, in keeping with the fact that the Kéhler form is not globally
exact. Topologically P? has a single 2-cycle, which we can take to be parametrised by
{z1 € C,25 = 0}. Using the parametrisation of the Kihler form from eq. (f.7) we can
verify that fpl J =m.

5.1 Scalars on P?

We first study the lowest-lying eigenmodes of the scalar Laplacian on P2. This is determined
by the eigenfunctions of

~Dy,D™¢ = —g" (D; D36 + D;D;b) . (5.8)
Acting on a scalar [D;, D;]¢ = —iF;;¢, and so

—D"Dy¢ = —29" D;D;¢ — ig" Fj30,
= —2¢"D;D;¢ +ig" Fj5¢. (5.9)

We can evaluate g/ F;; = 4iM to obtain

~D,D% = —~2¢" D;D:¢ + 4M¢,
= —2¢7D;D;¢p — 4M 6. (5.10)
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As —gij D;Dj is a positive semi-definite operator the lowest eigenfunctions are obtained
by solving D;¢ = (9; — iA;)¢ = 0 for M > 0 and D;¢p = 0 for M < 0. The form of the
solutions are

M>0: ¢(z2) =0+p2) M2, 2), m? = 4|M|,
M=0: ¢(z,2) = ¢o, m2:0,
M<0: ¢(z,2) =0+p) M2z, 7), m? = 4|M|. (5.11)

where fy; and gp; are holomorphic polynomials of degree |M|. The degeneracy of the
lowest modes is set by the number of such polynomials, and is (|M|+ 1)(|M| + 2)/2.

As for the case of P! x P! the scalar modes come in two types. One corresponds to
the four-dimensional vector A, ® 1, which is not twisted. The masses and degeneracies
of this mode can be directly computed from the standard scalar Laplacian. The second
type of mode corresponds to transverse scalar degrees of freedom. Such transverse scalars
are valued in the normal bundle, Op2(—3). ‘Zero modes’ - i.e. holomorphic sections of the
bundle - can occur only in the presence of at least three units of flux. In this case the form
of the zero mode is given by solving the equation

Di¢ = (9; — i47)¢ =0, (5.12)

where the flux is twisted by three units, M — M — 3. As non-vanishing flux is not
compatible with supersymmetry in the geometric regime, such modes will not be massless,
and the computation of their mass will require a twisting component to be introduced in
the naive eigenvalue equation.

5.2 Fermions on P?

To formulate fermions on P? and the Dirac equation we need to establish a vierbein and
compute the spin connection. We require a set of orthonormal frame vectors €, satisfying

- 1
gwjeuaeuﬁ = §6a57 (513)
This complex vierbein is given by

1 1
€1 = ————(Z1dz1 + Zodzo),

2M1+p%( )
o= 2L (Gidz 4 md2)
€] = =—————(21dZ1 + 20dZs),
1 201+ %) 1421 + 22022
- 1 1 (22d d2)
€ = - ————575 k2021 — 210%22),

291+ )17

1 1
65 = ————————(Z2dz; — Z1dZ2). 5.14
5 2p(1+p2)1/2(2 1 — Z1dZ) (5.14)

We can write the metric as

.2 N
. - €1 — ey - - €9 — €5
d82:(€1+€1)2+<1i 1> +(62+62)2+<2z‘ 2>
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= 1 dp* + v o2+ r ol + v o2 (5.15)
(14 p?)? Q+p227 A4p2) " A+ " '

where we have defined

1
dp = 2p [(Z1dz1 + Z2dzo) + (21d21 + 20d20)],

7= i [(21d21 + Zadzo) — (21421 + 22d55)],
1
Oy = 37 [(22d21 — 21d2) + (22dZ1 — 21dZ2)]
1
7T 92 [(z2dz1 — 21dz) — (22dZ1 — Z1dZ))]. (5.16)

The one forms o; are the left invariant SU(2) one forms that satisfy
doy =20y No,, doy=20,No0,, do,=20,N0y.

We can then write
ds® = e + €3+ €3 + €3, (5.17)

with the real vierbein e; given by

e = ;dp, €2 = LO_Z? €3 = Lo—m = Lf"y' (5.18)
1+ ) 1+ 77 L+ )12 1+ )72
If we define é, as the dual basis to e, given by é, = €]'0,,, we obtain
. 1+ p? _ _
é1 = a+s) (210, + 220, + 210z, + 2205,)
R 1+ p? _ _
€y = (27/)) [—21(921 - 22822 + 21821 + 22822] .
X 14+ p?)V2 _
€3 = (+) [Z2azl - Zlazg + Z2821 - Z1652] )
A 14+ )2 )
€4 = ( ’Li) ) [_Z2821 + Z18Z2 + 22651 - 21622] ’ (519)
The metric compatible spin-connection is easily computed using the Cartan structure
equations
de® + w5 A e’ =0. (5.20)
Modulo antisymmetry properties the non-vanishing terms are
1 — p? 1 1
Wiz — =y )62’ W = _Ze, U__ 2, (5.21)
P
1 -1 1+ 2p?
w23 = —e4 w24 = —eg3, w34 = (—i_ip)eg . (522)
p

The Dirac equation for a fermion zero mode is

1
ey <8m + g[ﬁaﬂﬁ Jwmas — iAm>7,[) =0, (5.23)
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with the gamma matrices 4* as in eq. (R.5). The kinetic part of the Dirac equation is

ie™ A Om = <DO DJ) , (5.24)

where

2y ,_ _ i 2y1/2 , _
2(1-|p-p )(21551 + Z2822) %(22521 _ 21522)

D, = 7
w (2205, — 2105,) &ﬁ (210, + 220,)
— 2 i 2y1/2 , _
2(1p+p )(21(921 + 200.,) %(22521 — 210,,)
D_ = . (5.25)

2i(14p)1/2 —2(14-p%) /= .
%(22321 — 2105,) (p+p )(21321 + 205,)
The spin connection term is

) . 0 —3p°1
ie' 70 gwaﬁm[:ya,:yﬁ] =3 . (5.26)
—(p*+6)I 0

As for the P! x P! case we wish to use non-trivial magnetic flux to generate bifun-
damental chiral fermions. We first focus on line bundles, namely Abelian magnetic flux
backgrounds. We shall subsequently discuss the more complicated case of non-Abelian
bundles in section [.4 below.

As there is only a single 2-cycle, and as the Kéahler form itself is topologially non-trivial,
the magnetic flux background satisfies F' = AJ for some A. To turn on the U(1) gauge

M idff Jd i
Am:2—<z S ):Mpeg, (5.27)

bundle, we choose

o \l+rw) (+u
giving
dz* A dF Fdy A i dE
F=dA=tM— - it M——— =2M 2
d i 01w i e J, (5.28)

with f]Pl F =2nM.
Using the fact that e, - eg = 043, it follows that the gauge coupling term in the Dirac
equation, prior to twisting, is

0
+iemAY(—iAy) =2 Mp = Mp < UZ) . (5.29)
o, 0
The Dirac equation
R (e 1 ~a :
iel Y| O + g[y A lwmag — 1Am | = 0. (5.30)
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T
can now be solved. Writing the fermion as (1/11 Py Y3 ¢4> , the equations factorise into

T T
separate forms for ‘left’-handed <1/)1 1/)2> and ‘right’-handed <¢3 ¢4> modes, where
‘left’ and ‘right’ refer to chirality in the P2. All modes correspond to left-handed spinors
in four dimensions.

The Dirac equation for left handed particles is

(D- + B)yr =0 (5.31)
which is
22040 (21, 4 20,,) — TS AR (h z9,,) o
=0
W(Z2821 —210s,) _2(;“2) (2102, + 2205, __(1+21‘2/f[3p2+6 <¢2>

The Dirac equation for right handed particles is

(Dy + A)pr =0

which is
72(1?)2) (2105, + 2205,) — B30 2i(1+52)1/2 (2202, — 210,) v3\ _
M (22(951 — 21852) 72(1;’)2) (21821 + 22822) - 7(3+22M)p Py '

Zero mode solutions are present only for the right handed particles [R1].° Normalised
solutions take the form ¢r = (13,14) with

(o gz, 2)(1 +p?)itE ) '
where f and g are holomorphic polynomials of positive degree. Note that these are local

solutions of the Dirac equation, valid only within this patch. Requiring that the wavefunc-
tions are normalisable and square integrable gives

e For |M| < 3/2, there are no normalisable zero modes.

e For M > 3/2, we requires ¢ = 0, and f(z1,22) to be a polynomial in powers of z;
and zy of degrees less than or equal to |M|/2 — 3/4.

e or M < —3/2, we requires ¢ = 0, and ¢(z1, Z2) to be a polynomial in powers of z;
and Zp of degrees less than or equal to |M|/2 — 3/4.

5The reason for this can be understood from the form of the left-handed eqautions. The g—s term present
at small p causes wavefunctions to have the singular behaviour ¢ ~ p~2 near p ~ 0.
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Twisting

The above solutions are written in terms of half-integral fluxes. This is because it is
necessary that the fermionic wavefunctions be globally well-defined. It is well known that
P2 is not a spin manifold, as the second Stiefel-Whitney class H?(P?,Zs) is non-zero. P2
does not admit a globally defined spin structure. For any integral M € Z, the wavefunctions
of eq. (p-39) cannot be globally defined: for appropriate choices of patches A, B and C' the
patch transition functions satisfy

OapO0OpcOcyq = —1. (5.33)

However this problem is resolved if M € Z+ 1/2 rather than M € Z. In this case the tran-
sition functions necessarily incorporate both gauge and spin components, and there is an
additional —1 in eq. (f.33) from the half-integral gauge field. The fermionic wavefunctions
are then globally well-defined, and the fermions transform as sections of a spin® bundle
rather than a spin bundle. In the context of P2, the necessity of the half-integral gauge
background that allows the fermions to be globally defined was first realised by Hawking
and Pope [BI]. In modern language it corresponds to the cancellation of the Freed-Witten
anomaly [BJ].

For the case of D7-branes wrapping a P? embedded in a Calabi-Yau, this half-integral
shift in the gauge background is automatically generated from the twisting necessary to
account for the nontrivial normal bundle. The discussion is very similar to the P! x P! case
discussed above. The action of the central U(1) on tangent vectors is

z ew z
()5 2)) =

which corresponds to an action on spinors of

0

A= 1 ([v2, vl + [vasv3]) (5.35)
000 O
000 O
— 5.36
0070 0 ( )
00 0 —i0

As before the twisting corresponds to a replacement of the central U(1) generator J by
J & 2R, where the choice of the sign is arbitrary. The difference for P? is that the twist
corresponds to M — M 4 3/2 in the Dirac equation, as the normal bundle is now Op2(—3)
rather than Opiyp1(—2,—2). For convenience we take M — M + 3/2 for (i1,12) and
M — M —3/2 for (¢3,14). The different signs for (¢1,12) and (3, 14) correspond to the
different R-charges of these spinors.

This twisting procedure implies that the Dirac equation should automatically be solved
with a half-integral flux background. The solutions of the twisted Dirac equation now take

W\ f(zl,zz><1 P22 T
()= (Gt

the form
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For the zero flux case M = 0, there is a constant zero mode, which corresponds to the
gaugino of 4-dimensional super Yang-Mills. In general (p.37) has w zero modes.

Zero mode counting

As for the P! x P! case the number and form of the zero modes on dimensional reduction is
in principle contained in eq. (5.37). However due to the dimensional reduction structure,

_(wx)_ (i@ (P
w“‘(Y Z)‘( .Q) (LAdj(Q)))’ (539

fermions in the X and Y sectors are both sensitive to the difference in magnetic flux
between the W and Z sectors. We suppose that the net amount of magnetic flux in the
W sector is M. From section B the charge felt by the bifundamental fermions comes from
the [A, A] term and therefore is +M for the X modes and —M for the ¥ modes. The
chiral spectrum consists of A3y modes in the (P, Q) representation from the X sector, and
N_jr modes in the (P, Q) representation from the Y sector. The net number of chiral zero
modes is the difference Ny — N_j;.

All zero modes come from the 3 and 4 sectors. For Abelian bundles, we see that

M-DO=2) (MM +2) (5.39

N = 2 2

and so
Ny — N_py = —3M. (5.40)

There exist chiral zero modes whenever the flux is non-vanishing. As c(P?) = (1+e¢)? with e
the fundamental class, and ¢1(F) = Me, eq. (5.4() coincides with the index [ ¢1(P?)c; (F).
In all cases the spectrum is non-supersymmetric as J A F' # 0, which follows immediately
from the fact that F = AJ. Furthermore, the fact that all zero modes lie in the (¢3,14)
sector means that no no-vanishing Yukawa couplings can be generated using only Abelian
fluxes.

Vectors on P2

The fact that with abelian fluxes all zero modes lie in the (13,14) sectors and no zero
modes can be found in the (¢1,12) sectors means that there are no vector zero modes
for abelian fluxes on P2. Vector zero modes are partners to the (i1,2) modes, and the
absence of fermionic zero modes means that that there are no bosonic modes that can be
considered as ‘zero modes’. Of course there are still vector Kaluza-Klein modes which are
eigenfunctions of eq. (B-29), but these are intrinsically massive.

The structure of the Yukawa interactions means that the absence of any vector zero
modes implies that all Yukawa couplings vanish, even for nonsupersymmetric brane con-
figurations. This motivates the inclusion of non-Abelian bundles, which will allow (¢1,2)
zero modes to exist and thus generate non-vanishing Yukawas.

— 38 —



5.3 Normalisation and overlap integrals

The generic form of an Abelian zero-mode wavefunction on P? is given by (we again take
M >0)
1 K _L

2tz
YiL 172 — (5.41)
NK (1 + 2121 + 2252)%

It then follows from the metric (f.§) that

= [ Eadyaulh v

- p2E+ 2L
= 47°R™ | dridr
/ A g
= 4m?RTEE (5.42)

where as for P! we have defined the standard integral I ﬁL . This is also the integral that
will arise when computing Yukawa couplings and the triple overlap of wavefunctions. Now

KL 2K+1 2L+1
+
Iy /drr /dr 1+r —|—T’)M+2
2K+1 a2L+1
= (drn—L / doy— 5.43
/ ! (1 + 1)M L+1 r1=const (1 + a2)M—|—2 ( )

— _ T ; 1 g K i
where we have defined o = T Using the P! result (B.29) for I}, we obtain

I'(K + )L+ DI'(M — L — K)

It therefore follows that the normalisation constant N\ AI}L is given by
2
KL|2 2parkr _ TL(EK+DINL+DI(M - L - K)
=4n°R I = . 5.45
N[ = 4m*R T(M +2) (5.45)
In this case the triple overlap integrals take the form:
YK1L17K2L2 _ 4r R IK1+K2’L1+L2 (5.46)

MNP B NﬁlLl N]fvlezz N§1+K2’L1+L2 %

As for the previously discussed cases of P! and P! x P!, the SU(3)/Z3 isometry of
the canonical P? metric acts as a flavour symmetry on wavefunction zero modes, and the
possible degeneracies of zero modes are set by the possible sizes of SU(3) representations.
In particular, in the limit that the bulk is infinitely large the Yukawa couplings will be
ordered by an exact SU(3) family symmetry. In the limit that the bulk is large but finite,
an approximate SU(3) family symmetry will exist.
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5.4 Non-abelian bundles

For the case of Abelian bundles, all solutions are right-handed and therefore all Yukawa
couplings vanish. In addition to the intrinsic interest of doing so, this also gives a moti-
vatation for turning on a non-Abelian bundle on the brane, as this will allow left-handed
zero modes to exist.

We follow [B3, B4] to obtain an SU(2) bundle on P?, deriving the gauge bundle from
the tangent bundle. Our choice for the SU(2) generators 7% i=2,3,4 is”

z O."E

?=— T3==— 7T'== (5.47)

These satisfy the SU(2) algebra [T7,T7] = ¢9*T* with €7 fully anti-symmetric, €23* = 1.
The gauge potential A, = ALTZ' is given by AL = w}f — %eij kwfﬁ. Explicitly this gives
—2—p? -2 -2
A2 = P €9, A3 = —€3, A4 = —¢€4. (548)
p p p

The corresponding field strength FF = dA+ AA A is

F? = 2(61 /\62—63/\64),
F3 = 2(e; Nez —eq A ey),
F* = 2(61 Neg—ex N 63). (5.49)

This is manifestly anti-selfdual and therefore a solution to the Yang-Mills equations of
motion.

We consider backgrounds in which an SU(2) subsector of the U(Q + 2) theory obtains
a vev of the above form. The gauge and adjoint fermion fields can be written as

po (B o) (WX
0 0 Y 2

Here W, X, Y and Z are blocks of size 2 x 2, 2 x Q, @ x 2 and @ x @ respectively, and
the instanton is valued in the W block. The instanton background breaks the gauge group
down to U(1) x U(Q). The X and Y blocks experience a non-trivial effect from the SU(2)
instanton.

The 9 equations of motion are

e, A (vmw - z'[Am,«M) =0 (5.50)

where V,,, is the covariant derivative, V,, = 0, + é[io‘,ﬁﬁ]wmag.
For column vectors in block X (we shall denote such doublets by (61, 62)) this reduces

2+4-p? .
v (0 & — B2 4 Mpy? 2—5%(73 —i74) o) _, (5.50)
02 L +in) EE - Mpy? )\ 6

to

"This rather unconventional choice is related to our choice of the gamma matrices in @)
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where we have also included M units of U(1) flux in addition to the SU(2) bundle.® The
equations of motion for the the right and left handed modes decouple. For the right handed
modes one has

1 [ -2+ (2M — 4)p? 0 r 1 (00) g
Do+ — oft — — ot =0 (5.52
+1+2p< 0 +2—@2M+2)p2 ] 2p\40)? (5:52)
1 [ 2+ (2M —2)p? 0 r 1 [04) &
D ok 4+ — oft — — 0 =0 (5.53
+2+2p< 0 —2—@2M+4p*) 2% 2p\00) " (5:53)

and for the left handed modes

1 (- —2)p? 1
D_91L+—< 8+ (M =2)p 0 >91L——<00>92L:0 (5.54)

2p 0 —4 — 2M p? 20\ 40
1 [ —4+2Mp? 0 . 1[04\, ,
D_0Y + — 0L — — of =0 5.55
2+2p< 0 —8—(2M+2)p2> 2 2p\00) " (5.55)

with Dy and D_ as defined in (f.25).
For the doublets obtained from the rows of the block Y, which we denote by

(A1, A2) (B50) reduces to
2 .
Mg (M ——(2;5 1y2 + Mpy? —é(%’) + i) AL\ g 5.56
v M )\2 - _l( _ (24+p%) 2 M 2 A - ( . )
5 (13 — i74) 55—+ Mpy 2

which yields

1 [2—(2M +2)p? 0 R 1 [04) g
D4 — M4 — M =0 (5.57
+ 1+2p< 0 —2 4 (2M — 4)p? 1+2p 00/ "2 (5:57)
1 [ —2—(2M +4)p? 0 R 1 [00) g
DN+ — A4 — M=0 (5.58
+ 2+2p< 0 2+ (2M — 2)p? 2+2p 40) ™ (5:58)

for the right handed modes and

1 [ —4—2Mp? 0 L, 1 (04)
DM+ — Mo — M=o
1+2p< 0 —8+(2M—2)p2> 1+2p<00> 2

1 [ -8— 2 1
D_A%_( 8 — (2M +2)p 0 >A£+_<00

2p 0 —4 4+ 2M p?

for the left handed modes.

We now discuss solutions of these equations. We focus on solutions from the ‘X’ block
as the Y’ block case is similar. We shall also not try to be exhaustive but instead shall
focus our search on ‘s-wave’ solutions that can be written solely as a function of p. This
simplifies the search considerably, as

5 - P
(21021 + 2:05) f(p) = 51 (p);
(220., — 210.,) f(p) = 0. (5.60)

8As in our earlier discussion, one requires M € Z + % for a consistent spin® structure.
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We first look to solve the right-handed equations. We recall these equations had many

solutions when only U(1) flux was turned on and we expect this qualitative feature to

persist. We note that for the upper component of 9{3 and the lower component of 95 the

equations decouple and we are just let with a single first order equation to solve. The
. Ru R,d .

equations for ;""" and 6, are respectively

(2+ (4 —2M)p?) 1"

901" =

P 2p(1 4 p?) ’
2+ (44 2M)p?) o2

6p0§’d _ (2+( )5 ) 5 (5.61)

2p(1 + p?)
These have solutions
1-M _ 14+M
00 = [z, 22)p(140%) 2, 030 =g(z1,2)p(1+p7) 2 .

Normalisability as § — oo requires that ‘%‘ — 0 as p — oo. This implies that for the Hf’"

solutions, M > 3/2, while for the 95 4 solutions we need M < —3 /2.

In the case of Abelian flux, no left-handed solutions existed at all. One motivation for
studying non-abelian flux backgrounds is that left-handed solutions to the Dirac equation
can now be found. Considering the left-handed equations, as with the right-handed modes
the HlL “ and 95 4 modes are decoupled. In this case we can check that no holomorphic
normalisable modes can exist in the vicinity of p = 0. However, if we consider the coupled
system of equations for HlL’d and 92L "“ then it turns out that finite and normalisable solutions
can be found. To see this, note that in the vicinity of p = 0, these coupled equations become

gL 1[(-2-2\ (6
o 1 — _ 1 . 5.62

Ld

A
These equations have a constant mode (01Lu> ~ ( )\) near the origin. At large p — oo,
! _

the equations take the form

Wl tul==1 4 .~ b ] (5.63)
92 ’ P — p_g M 92 ’
These equations admit normalisable solutions as p — oo for M = £1/2, when the p — oo
behaviour is 91L’d ~ pM, 92L’“ ~p M,
We can check numerically that these asymptotic behaviours patch together into a single

normalisable solution extending from p = 0 to p = co. This is illustrated in figure fl. We
were not able to obtain an analytic expression for this zero mode.

6. Conclusions

Local brane realisations of the Standard Model around a (resolved) singularity have vari-
ous phenomenologically attractive properties. They also drastically reduce the geometric
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Figure 1: A plot of the numerical behaviour of 91L’d and 92L " for the coupled left-handed zero

mode, shown for M = —1/2. The growing (but normalisable) mode is OlL’d and the decaying mode
05"

complexity associated with global models. Furthermore, such local Standard Model con-
structions are forced on us by certain moduli stabilisation scenarios, such as the LARGE
volume models of [[I§, [[7].

In this paper we have studied certain aspects of such local D7 brane models in great
detail. The paper has been devoted to studying the precise form of the wavefunctions that
arise, through solving the appropriate differential equation for the zero modes. Compared
to algebro-geometric approaches, the advantage of having explicit wavefunctions is that
these are not restricted to holomorphic information and also contains information about
the Kéahler metric - the overlap of the wavefunctions directly gives the physical Yukawa
couplings rather than simply the holomorphic component. The methods of this paper can
be seen as an extension of the approach of [[[J] to local D7 brane models. Our particular
emphasis has been the cases of branes wrapped on P! x P! and P2, as these spaces represent
the simplest examples where we can solve the Dirac and associated equations. We have
dimensionally reduced super Yang-Mills on these surfaces, and solved the (twisted) equa-
tions to obtain the normalised zero modes for bifudamental fields that transform as scalars,
spinors and vectors on the internal space. We have worked with both supersymmetric and
non-supersymmetric brane configurations, and with Abelian and non-Abelian magnetic
flux backgrounds. In P? even though the Yukawa couplings vanish for both supersymmet-
ric and non-supersymmetric Abelian flux, non-Abelian fluxes can lead to non-vanishing
Yukawa couplings.

The cycle geometries have isometries which manifest themselves as flavour symmetries
of the low-energy theory, acting on the zero modes. Where comparison is possible the zero
mode degeneracies agree with those computed using index formulae. The Yukawa couplings
vanish if we require a vanishing FI term, J A F' = 0. If we allow J A F' # 0, and assume
either that the D-terms are cancelled by quantum corrections or field vevs or that the brane
configuration is non-supersymmetric, then the Yukawa couplings can be non-vanishing.

Let us close by outlining some directions for future work.

1. We would like to extend this work to realistic D-brane models, where the gauge
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group resembles that of the MSSM. This will also require the construction of globally
consistent brane configurations. This paper has focussed on obtaining the normalised
wavefunctions and we have not imposed tadpole cancellation conditions. This is less
important here where our focus is simply on the form of the wavefunctions, but for
a complete and realistic model it will be necessary to ensure that the full brane
configuration is consistent.

2. It would be instructive to understand the connection between the geometric Yukawa
couplings and the Yukawa couplings in the singular limit, along the lines of [Bj]. In
the singular limit anti-branes are supersymmetric objects and the Yukawa couplings
can be non-vanishing for supersymmetric brane configurations. In the geometric limit
the Yukawa couplings automatically vanish for supersymmetric brane configurations.
It would be nice to understand better the interpolation between these two regimes.

3. It would be interesting to generalise the computations in this paper to more complex
surfaces, such as del Pezzos. In some cases analytic metrics exist (e.g. see B]) and
it may be possible to explicitly solve the Dirac equation and compute the zero mode
wavefunctions.

4. The techniques developed here may be extended to the case of Euclidean D3-branes
wrapping the corresponding 4-cycle. This could be interesting to study instanton
induced effective couplings in the four-dimensional effective action (see [B7] for a
recent review on these techniques).

5. The 4-surface metrics, for example the use of the Fubini-Study metric for P?, are those
appropriate for the case that the surface is embedded in a non-compact Calabi-Yau.
In this case the local metric contains isometries that act as flavour symmetries of the
Dirac equation. It would be interesting to obtain the form of the wavefunctions for
surfaces embedded in Calabi-Yaus that are compact but of very large volume. In this
case the largeness of the bulk provides a small breaking parameter for the local flavour
symmetry [B§]. By obtaining the wavefunctions on such perturbed spaces, possibly
using numerical methods such as [B§—[H]], it will be possible to study explicitly the
small breaking of flavour symmetry.
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A. Kaluza-Klein vector modes

In this appendix we briefly note that scalar eigenfunctions of the Laplace equation auto-
matically generate vector eigenfunctions, allowing the spectrum and profiles of KK vector
modes to be derived from those of scalar vector modes. We use here the notation of
section .

To do so we suppose that 7% = X7k D, Q% where Q% is some scalar mode, and X7*
is a covariantly constant tensor. In particular X7* may be either J7*¥ or ¢/*, where Jjk is
the almost complex structure. Dy = Vj — z’(A>%b is the gauge covariant derivative acting
on scalars. Then

D;Did = D, DX D0
— D (Xﬂ'k[bi, Dyl + XjkaDi) Qb (A1)

Acting on a scalar, [D;, Di] Q% = —i(G)% Q% and so we obtain
D;D'®i = D, (-ink<G>ik’“anb) + D;(X?* Dy DO (A.2)
Now, the flux is such that (G);; ~ €;; and so is covariantly constant under V. Therefore,
DAGYE = (@)D
We then obtain

DiD' %7 = _ink<G>ikabl~7iQ“b + X*D; Dy D'Q
= —iXIHG) P D + X (Dy, Dy (D'Q™) + X7 Dy(DiD'Q™). (A.3)

Now as before [D;, Di] on a vector gives [V;, Vi] — i(G)%, and so we get

—ﬁfyi@gabi@mb - ;D—; (—2ix7(G)u D (A.4)
+ XKV, V] (Bimb) + XD, (Dibimb» .
@?a = Xff?kaa, giving®
—%Di@gaﬁ@j»ab = Dg;ba (—2ixPX7(G)a D) (A.5)
+%X§’Xﬂ“[vi, Vil (Dimb) n %X?Xjkbk (f)if)iﬁab) .

9We supress the ab indices in (G) to simplify the notation.
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We now take X = gjx, and so XfXjk = gP*. In this case

_if).q)b.abiq)j,ab
2¢2 Kl

_ %[(ng)ba(_gucﬁ)bimb (A.6)
+(DRQ)"[V;, V(DY) + (DFQP) Dy, (D, D'QY))]
— sl(@) (-2ic))e

+(®@r)" Vi, V] (@) + (@) Dy, (D D'Q™))] (A.7)
Combining ([A.7) with (R.27) we obtain a total result of

1
2g2

m2

(D*Qb) Dy, (DlDlQab) _ 52

(Dka“> (D) -

In particular, all the flux and curvature contributions have cancelled, and if 2 is a scalar
eigenfunction of D; D’ with eigenvalue —m?2, then Dy is also a vector eigenfunction with
eigenvalue —m?.

A similar result is obtained for X;; = Jj;: the vector mode Piab = XKD, O ig a
vector eigenfunction with mass —m?2. On their own neither of these two modes satisfy the
gauge-fixing condition D;®% = (. However the gauge-fixing condition can be satisfied by
writing

I = o ¢’ DO + B JIF DO, (A.8)

for appropriate constants a and (3.

B. Patches

In this section we give some details as to the explicit patch transition functions for the
fermionic wavefunctions on P'. We start with coordinates z, Z with

4dzdz

2 _
ds” = (14 22)2°

(B.1)

These coordinates are good for describing all of P! except the point at co. We denote this
patch by A. To describe the point at infinity, we must change patches to the patch B

coordinatised by u = —1/z. The functional form of the metric is unaltered,
4dudu
ds? = ———. B.2
§ (1 + uu)? (B-2)

Associated with the patches A and B there are two separate vielbeins that are both valid
in the overlap region A [ B, 6}4, ei‘ and e}g, 623. We have

1

1 1 2 2
e = e s = — e = —€ s =
A,z Az 1 +227 Az Az 1+ 22
1 t
S 2 _ 2
eB,u - eB,ﬁ - 1+ uii’ eB,u - _eB,ﬁ - 1+ ui (B3)

— 46 —



Using the coordinate relation u = —z~! that holds on the overlap region, we find that the
two vielbeins are related by

. z . . z .
i i i i
€B,z = (;) €A,z B,z = <§> €Az

In terms of real vectors e! and e?, we can write

eg |\ [ cos(26) —sin(26) ol
<€£> B <Sin(29) cos(26) ) (ei) : (B.4)

Lifting this to an action on spinors using A = exp (iwo‘ﬁAag), we obtain ¥ = OB, spint A,

with
z\1/2
z 0
O.AB,spin = ( (ZZ) E)l/2> . (B.5)

(2

In the presence of a nonvanishing gauge background there is an additional gauge contribu-
tion to the transition functions. The gauge fields on the two patches are

iMzdz  iMzdz

2(1+22) 21+ 22)
iMudu tMudu

Ap = — . B.
5720 +wn) 201+ ua) (B.6)

Ay =

We can verify that on the overlap region these are related by
Z\ M/2
Ag=As+d <z'ln (2)

- ) = Ay +d)\, (B.7)

and so the gauge transition function is

. M2 2\ M/2
O.AB,gauge = 67)\ = e ln(z) = <—> .

The overall patch transition function is then

ISAEN]

O
O.AB = O.AB,spinO.AB,gauge = i+M | - (B8)
0 (3)°

Acting on zero modes of the Dirac equation with the patch transition function, we obtain

1-M 1-M

5 5 z 27 (+57) U ul (5)
OAB <z;§2,5;> = OAB <fA( )(1+ ) 1+M > = (fB( )(1+ ) 1+M >, (B-9)

ga(2)(1 +22)(75")

gs(u) (1 +ua) "2

where both f4,g4 and fp,gp are analytic polynomials of maximal degree |M| — 1. The
patch transition functions therefore indeed take normalised solutions of the Dirac equation
to normalised solutions of the Dirac equation.
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